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In Context: Review

Introduction

Postoperative (partial) flap necrosis is one of the most 
feared complications in reconstructive flap surgery for both 
the patient and the surgeon. With an incidence of 4 to 16% 
depending on flap type, it represents a significant prob-
lem.1-3 Flap necrosis can lead to slower recovery, infection, 
repeat surgery, delayed adjuvant therapy, and increased 
health care costs. Patients may even encounter psychologi-
cal distress with a decline in their quality of life.1,4 In order 
to minimize the risk of necrosis, surgeons need to be able to 
objectively evaluate tissue perfusion during surgery, as par-
tial or even total flap loss may be prevented by immediate 
intervention whenever perfusion appears to be insufficient. 
Likewise, consequences of insufficient flap edge circula-
tion, including postoperative wound dehiscence and fat 
necrosis, could be prevented during surgery.5

The current gold standard for evaluating tissue perfu-
sion relies on the surgeon’s clinical judgement, that is, the 
subjective evaluation of tissue color, flap temperature, 
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capillary refill, and assessment of dermal edge bleeding. 
Although this method is accurate in 84 to 96% of cases 
(depending on flap type), the accuracy depends highly on 
the surgeon’s experience and expertise, whereas (by defi-
nition) it is also restricted by the visual performance limits 
of the human eye. Evidence suggests that clinical judge-
ment alone is an unreliable predictor of insufficient tissue 
perfusion.6 Therefore, various medical imaging modali-
ties are being developed to obtain real-time assessment of 
tissue perfusion in an objective and reproducible manner. 
One such innovative technique is near-infrared fluores-
cence (NIRF) imaging using indocyanine green (ICG), 
also known as indocyanine green angiography (ICGA).5

Since Flower and Hochheimer developed an imaging 
technique to evaluate choroidal circulation routinely in 
1976,7 the principle has been adapted to currently avail-
able imaging devices. ICGA uses ICG, a water-soluble 
tricarbocyanine dye, as a contrast agent. Following intra-
venous administration, ICG is rapidly and extensively 
bound to plasma proteins, making it an ideal contrast 
agent to evaluate tissue perfusion.8 When exposed to 
near-infrared excitation in the wavelength range of 750 to 
810 nm, ICG reemits light (fluorescence) with a wave-
length of approximately 840 nm. A dedicated digital 
video camera, which filters out the excitation light, allows 
the fluorescence of ICG to be recorded in real time.9

ICGA offers the potential to provide objective data to 
support intraoperative decision-making regarding flap 
design and is a useful adjunct for evaluating tissue perfu-
sion of flaps. Reported sensitivity and the accuracy of 
ICGA are 90.9% and 98.8%, respectively.10

Clinical use of ICG has proved to be safe in humans. 
The incidence of adverse events is about 1 in 42 000 
patients.11 Furthermore, ICG has a plasma half-life of 
approximately 3 to 5 minutes, which allows multiple 
injections throughout a procedure, limited up to a safe 
maximum dose of 5 mg/kg.8

ICGA is currently explored for multiple applications 
in surgery.12 In plastic and reconstructive surgery, it is 
used predominantly to assess tissue perfusion in (free) 
flap surgery.5,9,13-18 Although recommendations for use of 
ICGA have been previously reported,18 there is still no 
consensus about the technical use of ICGA during recon-
structive surgery, including timing of evaluation and opti-
mal intravenous dose of ICG.5 This is important because 
ICG dosage influences fluorescence intensity, thereby 
influencing the adequacy of perfusion assessment.19 On 
top of that, there are other factors that can have an impact 
on fluorescence intensity within the collected images, 
including the distance and angle between the camera and 
region of interest, and ambient light during perfusion 
evaluation. These are either not considered to be impor-
tant or only briefly described in current literature. Since 
ICGA is rapidly being introduced in clinical practice 

worldwide, it is important that surgeons are aware of fac-
tors that potentially play a role with regard to the feasibil-
ity of this imaging modality. Therefore, this study aims to 
provide a comprehensive insight in potential factors 
influencing the fluorescence intensity when using ICGA 
by performing a systematic review, regarding all studies 
reporting on ICGA to assess tissue perfusion during 
reconstructive flap surgery, and ex vivo experiments.

Materials and Methods

This report is composed of 2 parts. First, a systematic 
search of the literature was conducted to provide a com-
prehensive overview of currently used ICGA protocols in 
reconstructive flap surgery, focusing on ICG dosage, tim-
ing of both application and assessment, working distance, 
and other possible influencing factors as discussed above. 
In the second part, ex vivo experiments were performed 
to further investigate the practical influence of potentially 
relevant factors.

Systematic Review

A systematic literature search was conducted in July 2018 
in the following databases: National Library of Medicine 
(PubMed) database, EMBASE database (via OvidSP), 
and Cochrane Library CENTRAL, using the methodol-
ogy described in the PRISMA (Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses) statement.20 
The following terms were used (including synonyms and 
closely related words) as index terms or free-text words: 
“flap surgery,” “indocyanine green,” “angiography,” 
“perfusion,” and “imaging.” The search syntax applied to 
each database, and the PRISMA 2009 checklist are 
attached as Supplementary Material (available online). 
First, all titles and abstracts derived from the search were 
screened and independently reviewed for eligibility by 2 
researchers (TP and RMS). There were no restrictions on 
language in this review. Letters and comments on arti-
cles, conference abstracts, case reports including less 
than 10 flaps, studies conducting research other than on 
human subjects, reviews, and meta-analyses were 
excluded. Studies were considered eligible if they

1.	 Reported on ICGA in free flap, pedicled flap, or 
mastectomy skin flap surgery

2.	 Reported on ICGA to assess tissue perfusion
3.	 Described an ICGA protocol

In case of uncertainty, full-text reports were screened 
to determine eligibility. Any differences in the resulting 
derived articles were discussed by the 2 aforementioned 
researchers. If no consensus was reached, a third author 
(SSQ) decided after discussion. Other sources including 
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the reference lists of included articles and recent review 
articles were screened for relevant articles not identified 
by the online databases based on previously described cri-
teria. A data extraction sheet was developed containing 
items on the type of study included, the operated flap type, 
the applied imaging system, the dose of ICG, the working 
distance (eg, distance from imaging head to tissue), the 
timing of evaluation, the timing from administration of 
ICG to evaluation, the method to evaluate tissue perfu-
sion, and the decision that was taken to excise tissue in the 
study. The data extraction sheet was completed for all eli-
gible studies by 2 independent researchers (TP and RMS).

Ex Vivo Experiments

The methods for the ex vivo experiments have been pre-
viously reported by 2 of the authors (JVDB and FPW), 
using a laparoscopic NIRF imaging system.19 In this 
study, a handheld NIRF camera (Fluobeam, Fluoptics, 
Grenoble, France) was applied, provided with integrated 
near-infrared light source with excitation between 750 
and 800 nm and maximum fluorescein emission detection 
between 780 nm and 850 nm. In the author’s institution, 
this system is used in daily practice for perioperative tis-
sue perfusion evaluation as well as for mapping of lym-
phatic collecting vessels in the outpatient clinic.21,22

Experiments were performed using ICG diluted within 
40 mg/mL albumin in a 0.9% NaCl dilution. This was 
done accordingly as ICG is considered to bind to albumin 
in vivo, which modifies its optical properties; 40 mg/mL 
was chosen as a stable point within the normal reference 
range for serum albumin, which is 35 to 55 g/L. In all 
experiments, a total of 18 different concentrations of ICG 
were used, ranging between 0.01 and 0.0001 mg/mL, rep-
resenting 50 to 0.5 mg of total dose of ICG administered 
intravenously in a female patient, weighing 77.0 kg, with 
a blood volume of 5000 mL, estimated using MedCalc300 
(Medscape, 2018). A bodyweight of 77.0 kg was consid-
ered average after obtaining chart data on 25 consecutive 
patients, who had undergone a deep inferior epigastric 
artery flap in the authors’ institution.2

Next to the ICG dilutions, wells plates and beeswax 
plates were used for this experiment. From each dilution, 
9 times 3 mL of the ICG-containing mixture was placed 
on a wells plate in order to completely fill the wells with 
fluid, to minimize fluid-to-beeswax plate air layer. The 
influence of distance was measured fixating the imaging 
head at 12 distances varying from 50 to 5 cm from the 
surface of the dye. This was then repeated for all dis-
tances with, respectively, 1 and 2 beeswax plates of 
exactly 1 mm thickness, stacked to the wells plate. 
Beeswax plates (Stockmar, Kaltenkichen, Germany) 
were chosen because it approaches the scattering behav-
ior and translucent light penetration of human tissue.23 

The experiments were performed in darkness (windows 
covered) with only one computer screen left on. The 
aforementioned experiment with 1 beeswax plate was 
repeated with uncovered windows to measure the influ-
ence of ambient light. The influence was measured at a 
distance of 15 cm for all ICG dilutions. The fluorescence 
intensity of the middle cup was measured at incident 
angles of 90°, 75°, 60°, and 45° between the imaging 
head and middle wells surface plane. The penetration 
depth was evaluated with the use of beeswax plates pro-
gressively stacked one by one to increase thickness until 
it was not possible anymore to distinguish the dilution-
filled wells from its surroundings. In addition, the influ-
ence of beeswax plates themselves on fluorescence 
intensity was analyzed. The setup of the ex vivo experi-
ment is illustrated in Figure 1. In all experiments, fluo-
rescence intensity was measured on a grayscale from 0 to 
255 using ImageJ software (Version 1.51, ImageJ, 
National Institutes of Health, Bethesda, MD). Zero is 
black and 255 is white on this scale. Values in between 
make up different shades of gray.

Statistical Analysis

The association between dose and fluorescence intensity 
for different experimental conditions were first visualized 
using scatter plots with lines fitted using either linear 
spline regression, in case of an observed ceiling effect, or 
locally weighted scatterplot smoothing (LOESS), in case 
of an observed curvilinear association.

To quantify the associations between covariates of the 
experiment and fluorescence intensity, regression coeffi-
cients were estimated using multivariable, or adjusted, 
linear regression analysis. No univariate analyses were 
performed as the estimates would be too dependent on the 
setting of other covariates of the experiment. In case a 
ceiling effect was present, observations for which the 
intensity was >254 on the 0 to 255 scale were omitted to 
prevent biased estimates. Curvilinear associations were 
estimated using polynomial regression (ie, the linear 
regression model was extended with quadratic and cubic 
terms for continuous variables and tested for signifi-
cance). All analyses were performed using R version 
3.3.3 (R Foundation for Statistical Computing, Vienna, 
Austria) and the rms package version 5.1-0.

Results

Systematic Review

Forty-nine articles,24-72 including 1996 surgical flaps, were 
selected for the review. Study designs included prospective 
cohort studies (n = 27),31,34,35,38,39,41-43,47-50,56,58-60,62-71 retro-
spective cohort studies (n = 16),25-27,29,32,33,36,40,44,45,51,55,57,61,72 
prospective pilot studies (n = 3),28,37,52 and retrospective 
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case series (n = 3).46,53,54 No randomized controlled trials 
have been performed yet that concern ICGA in plastic and 
reconstructive flap surgery. A detailed overview of the 
study selection is presented in a PRISMA flow chart (see 
Figure 2). A summary of findings from the included arti-
cles is presented in Table 1.

Flap Perfusion: Clinical Applications.  Indocyanine green 
angiography has been reported for several types of flaps 
in plastic and reconstructive flap surgery in a clinical set-
ting. The majority of included articles used ICGA to 
assess tissue perfusion of mastectomy skin flap (n = 14) 
intraoperatively25,26,31-33,39-41,47,51,55,57,58,61; the remainder 
focused on the intraoperative assessment of nipple-areo-
lar complex perfusion,27,72 a combination of nipple-areo-
lar complex and mastectomy skin flap perfusion,24 
anterolateral thigh flap,28,29 deep inferior epigastric perfo-
rator flap,38,56,66 transverse rectus abdominis myocutane-
ous flap,38,56,70 superficial inferior epigastric artery 
flap,64,65,73 superficial circrumflex iliac artery flap,50 free 
pericranial flap,36 latissimus dorsi flap,34 free parascapu-
lar flaps,63 paramedian forehead flap,43 intercostal muscle 
flap,52 osseus free flaps,44 free fibula flap,45 and various 
pedicled and/or free flaps.30,35,37,42,46,48,53,54,59,60,62,67,69,71 
Two studies described preoperative perforator selection 
in addition to perfusion assessment50,73 (see also Table 1).

Imaging Systems.  Several ICGA systems have been 
described in the literature. In the majority of included 
studies (n = 29),24,26-28,30-32,38-41,43-47,51,53-62,72,73 the SPY 
imaging system (Novadaq Technologies, Inc, Toronto, 
Canada) was used for tissue perfusion assessment; the 
remainder used the IC-View System (Pulsion Medical 

Systems, Munich, Germany; n = 8),63-70 the Photo 
Dynamic Eye (Hamamatsu Photonics KK, Hamamatsu, 
Japan; n = 7),29,33,35,36,48,50,52 the Visionsense 3D high-
definition near-infrared-guided indocyanine green video 
angiography system (ICG-NIR-VA, Orangeburg, NY; n 
= 1),42 Hyper Eye Medical System (Mizuho Medical Co, 
Ltd, Tokyo, Japan; n = 1),34 the Fluobeam device (Fluop-
tics, Grenoble, France; n = 1),37 and Quest spectrum TM 
(Quest Medical Imaging, Akron, OH; n = 1).25 One study 
did not state what kind of device was used.71

Dye and Dosing.  In almost every study (n = 48), conven-
tional ICG was used as fluorescent dye. In only one of the 
included articles, monopeak infracyanine green (Infracy-
anine, SERB Laboratory, Paris, France) was used.37 The 
latter concerns an iodine-free preparation.

The majority (n = 37) of included articles reported  
a clear dosing regimen for ICGA, ranging from 2.5 to  
25 mg or 0.025 to 0.5 mg/kg when a fixed dose (n = 
21)27,30,33,38,39,44-48,50,52-54,56,58-60,62,72,73 or weight-adjusted 
dose (n = 16)25,28,34-37,42,63-69,71,74 was applied, respectively. 
Nine studies did not report any ICG dosing.24,26,29,32,40,41,43,51,61 
Three reports described a dose of 3 and 5 cc but did not 
report the concentration of ICG55,57,75 (see Table 1). Ten 
milligrams and 0.5 mg/kg were the most frequently used 
fixed dose and weight-adjusted dose, respectively (see 
Figure 3). In addition, 9 articles report a flush of saline fol-
lowing ICG injection.25,27,35,47,55,56,59,72,75

Working Distance.  The working distance, defined as the 
distance between the imaging head of the ICGA system 
and the area of interest (ie, skin of the flap), is reported in 
only 11 articles. Working distances of 20 cm,25,37,39,57 30 

Figure 1.  Setup of the ex vivo experiment.



Pruimboom et al	 107

cm,33,42,60 30 to 100 cm,63,69 and 20 to 40 cm48 have been 
reported. Valerio et al report a 2-dot laser-guided marker 
in the SPY system, which aids in identifying the optimal 
distance from soft tissue.44

Time to and Duration of Assessment.  The time to assess-
ment, defined as the elapsed time from dye administra-
tion to perfusion assessment, is reported in 21 of the 
included studies. Most of the studies describe recording 
directly following ICG administration (n = 11),27,28,30,36,3

9,44,47,48,53,63,71 while other studies start recording 15 sec-
onds (n = 3)29,49,59 or 60 seconds (n = 2) after intrave-
nous administration, respectively.52,56 Five studies report 
to start recording when first fluorescence change is 
detected in the flap (n = 5).31,33,37,41,60 Total duration of 

ICGA from start of recording to the end is reported in 14 
studies and is predominantly ranging between 60 and 120 
seconds.27,29,30,33,39,41,47,50,54,62 Assessments of up to 
20031,58 and 300 seconds36,71 have been reported as well.

Intraoperative Timing of ICGA.  Timing, defined as the 
moment of perfusion assessment during operation, varies 
with the flap type to be assessed. In the included articles, 
no major difference exists in timing of assessment. For 
example, mastectomy skin flap perfusion is mainly 
assessed after mastectomy, prior to and after inset of an 
implant.26 Free flaps are predominantly assessed after 
flap harvest when the flap is raised on its pedicle and/or 
after transplantation of the flap to the recipient site44 (see 
also Table 1).

Figure 2.  PRISMA flowchart showing selection of articles for review.
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Resection of Tissue and Perfusion Assessment.  A total of 27 
studies used ICGA imaging to guide resection of insuffi-
ciently perfused tissue (see Table 1).26-30,32,33,35,38-40,42,44-

46,51-55,57,59,60,62,69,70,73 The most applied methods to assess 
tissue perfusion were

1.	 Relative perfusion assessment (ie, “percentage of 
perfusion”)

2.	 Assessment of fluorescence intensity with gray-
scale imaging

3.	 Absolute flow value assessment, based on gray-
scale imaging

In 18 studies, quantitative software was used to calcu-
late relative perfusion of the region of interest, compared 
with normal tissue quantified as a reference with 100% 
perfusion.24,26,28,30,38,42,43,45,54,57,64-69 Perfusion assessment 
using absolute flow value is reported in 9 stud-
ies41,44,46,47,53,56,61,63,73 and a combination of the aforemen-
tioned in 3 studies.41,46,63 In 9 of these studies, cutoff 
values ranging from 25 to 60% to excise flap tissue have 
been reported for relative perfusion.26,28,30,38,42,45,46,54,67 
For absolute flow value assessment, in which a point 
value from 0 to 255 is based on a grayscale that corre-
sponds to the signal intensity, higher values equate to 
superior perfusion. In the remaining 3 studies, a value of 
6.0 was reported as the lower limit of acceptable perfu-
sion44,46,53 (see Figure 4). For example, Green et al report 

that areas of poor flap perfusion with absolute flow value 
under 6.0, as objectively assessed with SPY Q analysis 
software, were excised before definitive inset of the 
flap.53 Perfusion assessment according to grayscale imag-
ing was performed in 12 studies.27,29,31,33,36,48,52,58-60,62,71 
For example, Gorai et al marked the nonenhanced areas 
according to the grayscale image on the monitor.33

Factors of Influence During ICGA.  Only 12 of the included 
studies report factors that might influence the assessment 
of tissue perfusion, including ambient light,31,35,39,42,47,70 
the use of epinephrine containing injections,26,31-33,47,54,58 
the use of papaverine or other vasodilating agents,66 sys-
tolic blood pressure,30 stretch level of the mastectomy 
skin flap,39 use of absorbent compress surrounding or 
underneath the flap in order to reduce artifacts,28,42,52 use 
of the electric knife during assessment,70 and the angle of 
the imaging head to the region of interest.70

Of these studies, only 4 explicitly report that all oper-
ating room lights were turned off during the recording to 
avoid interference of ambient light with the detection of 
fluorescence.35,39,47,70 One study reported that ICGA was 
always performed under room light conditions.42 None of 
these studies report the influence of ambient light on 
assessment.

Diep et al found that more patients developed severe 
flap necrosis when they received tumescence-containing 
epinephrine during their mastectomy.32 Due to the 

Figure 3.  Frequencies of studies, reporting difference doses of indocyanine green in plastic and reconstructive flap surgery. 
Holm et al64-68 reported 5 studies with 0.5 mg/kg dose.
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difficulty in interpreting ICGA, the authors discontinued 
the use of tumescent solution. Munabi et  al observed 
false-positive results in flap assessment due to the use of 
the tumescent technique, rendering ICGA less reliable to 
predict necrosis.47 Hammer-Hansen et  al report that no 
local anesthetics with adrenalin were used at any time 
during surgery in order to not impair visualization of the 
mastectomy flap perfusion when performing ICGA.26 
The other studies considering epinephrine as an influenc-
ing factor only describe that no epinephrine was injected 
into the surgical site.33,54,58,75

Alstrup et  al performed ICGA measurements with a 
mean systolic blood pressure above 100 mm Hg and dur-
ing the assessment, a Doppler confirmed flow through the 
pedicle.30 Yamaguchi et  al report that systolic and dia-
stolic blood pressure is registered at the beginning of the 
analysis, without describing the purpose.70

Rinker placed laparotomy sponges in the breast pocket 
after completion of the mastectomy, prior to ICGA, to fill 
the dead space and to allow the skin flaps to lie flat with-
out areas of redundancy, but also without stretch.39 Two 
reports described that flaps were surrounded with clean 
surgical towels during ICGA assessment to avoid back-
ground signal noise from the other vascular tissues.28,52 
Another group used an absorbent compress to fill the 
dead space underneath the flap in order to reduce 
artifacts.42

Yamaguchi et al reported that the electric knife had to 
be switched off to prevent artifacts in ICGA imaging, a 

commonly seen interference by electromagnetic interfer-
ence. The authors also suggest that ICGA recording 
should be performed before flap reshaping, since the 
video camera must be perpendicular to the flap 
surface.70

Ex Vivo Experiments

The results of the ex vivo experiments are depicted in 
Figures 5 and 6. These figures illustrate that fluorescence 
intensity is associated with each of the factors that were 
independently varied in the experiment, including posi-
tioning of the imaging head in various degrees (ie, 90°, 
75°, 60°, and 45°), various distances, with or without 
ambient daylight and with stacking beeswax plate to 
mimic “penetration depth.”

The curves in Figure 5A show that positioning the 
imaging head in an angle of 60° to 90° does not influence 
fluorescence intensity to any meaningful extent, exempli-
fied by the fact they overlap almost completely. However, 
the fluorescence intensity for 45° does differ substantially 
from the other angles: the intensity is lower than any 
other angle over the whole range of doses. This was also 
substantiated by large negative regression coefficient for 
45°. Compared with a 90° angle, the average difference 
for 75° was estimated to be −5.76 (95% confidence inter-
val [CI] = −21.04 to 9.56; P = .460), for 60° −11.93 
(95% CI = −27.21 to 3.36; P = .126), but for 45° −67.59 
(95% CI = −82.88 to −52.31; P < .001).

Figure 4.  Frequencies of studies reporting a cutoff value for tissue excision using indocyanine green angiography to measure 
tissue perfusion as percentage of perfusion (scale 0 to 100%) or as absolute flow value (scale 0 to 255 based on a grayscale).
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The curves in Figure 5B show that fluorescence inten-
sity is slightly higher in ambient light and suggest opti-
mum fluorescence intensity reached with an ICG dose 
between the range of 10 and 20 mg, as the intensity is 
highest within this range. Figure 5C and D shows that 
fluorescence intensity decreases when distance increases 
or when penetration depth (ie, number of beeswax plates) 
increases, respectively. Both figures also suggest opti-
mum fluorescence intensity reached with an ICG dose 
between the range of 10 and 20 mg as all curves are at 
their optimum in this range. When measured from a dis-
tance of 25 cm, maximum fluorescence intensity is 
reached with an ICG dose of approximately 5 mg or 
more.

Figure 6A illustrates fluorescence intensity for differ-
ent penetration depths (in mm) and Figure 6B for differ-
ent distances (in cm) stratified by various penetration 
depths (ie, number of beeswax plates). Both are measured 
with a constant dose of 10 mg of ICG. It is clear from 
these graphs that there is a negative association between 
number of plates or distance, and intensity.

Table 2 shows the regression coefficients of the curvi-
linear associations between dose, distance, and penetra-
tion depth, and fluorescence intensity. All 3 associations 
could best be described using third degree polynomials, 
demonstrated by the highly significant coefficients. These 
strong curvilinear associations are in agreement with the 
figures presented above.

Figure 5.  Results of ex vivo experiments. The graphs show fluorescence intensity for a range of doses. The different curves 
on each graph show differences between (A) various angles, (B) with and without ambient daylight at a distance of 30 cm, (C) 
various distances (in cm), (D) various penetration depths (in number of beeswax plates). Fluorescence intensity is measured on a 
grayscale from 0 to 255. Zero is black, 255 is white, and values in between make up different shades of gray.
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Regression coefficient for ambient light was estimated 
10.17 (95% CI = 5.23 to 15.10; P < .001).

Discussion

The aim of this study was to provide comprehensive 
insight in potential factors influencing the fluorescence 
intensity when using ICGA to assess tissue perfusion dur-
ing reconstructive flap surgery. To the authors’ knowl-
edge, the current study includes the first systematic 
review specifically regarding the use of ICGA protocols 
for evaluating tissue perfusion in reconstructive flap sur-
gery and authors’ consideration of factors that might 
influence fluorescence intensity during ICGA assess-
ment. Previous review articles mainly focused on the 
application and the effect of ICGA in flap surgery. For 
example, Smit et  al recently published a systematic 

review and meta-analysis on intraoperative evaluation of 
perfusion in free flap surgery and concluded that ICGA is 
one of the most suitable methods to measure free flap tis-
sue perfusion, resulting in improved flap survival.5 Li 
et al recently published a review regarding the applica-
tion of ICG in flap surgery and concluded that ICGA aids 
in the evaluation of flap microcirculation and perfusion.9

In part 1 of the current study, factors that are consid-
ered important in ICGA protocols, as well as factors that 
might influence fluorescence intensity and are therefore 
considered to be important by the authors, have been 
reviewed based on a systematic literature search. Based 
on the results, it can be concluded that most ICGA proto-
cols are insufficiently described, when concerning factors 
that might influence the outcome of NIRF imaging. When 
reported, there is no consensus on dosage of ICG, work-
ing distance, time to assessment, tissue resection 

Table 2.  Coefficients Curvilinear Associations Between Covariates of the Experiment and Fluorescence Intensity.

Regression Coefficient (95% 
Confidence Interval) P

Dose (mg/mL) 16.11 (15.12 to 17.11) <.001
Dose (mg/mL)2 −0.65 (−0.70 to −0.60) <.001
Dose (mg/mL)3 0.01 (0.01 to 0.01) <.001
Distance (cm) 5.49 (3.55 to 7.43) <.001
Distance (cm)2 −0.35 (−0.43 to −0.27) <.001
Distance (cm)3 0.004 (0.003 to 0.005) <.001
Beeswax plates (number) −15.50 (−19.23 to −11.78) <.001
Beeswax plates (number)2 −1.82 (−2.55 to −1.09) <.001
Beeswax plates (number)3 0.13 (0.09 to 0.17) <.001

Figure 6.  Results of ex vivo experiments. The graphs show fluorescence intensity for a range of (A) penetration depths (in mm) 
and (B) distances with various penetration depths (in number of beeswax plates). For both experiments, the indocyanine green 
dose was set to 10 mg. Fluorescence intensity is measured on a grayscale from 0 to 255. Zero is black, 255 is white, and values in 
between make up different shades of gray.
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and perfusion assessment, and time to and duration of 
assessment. Furthermore, only a few articles describe the 
actual consideration of potential factors of influence dur-
ing ICGA.

Part 2 of this study comprises ex vivo experiments 
with a handheld ICGA system to identify and analyze fac-
tors that influence the fluorescence intensity. The meth-
ods for these ex vivo experiments have been previously 
reported using a laparoscopic NIRF imaging device with 
special emphasis on cholangiography.19 In this study, 
these experiments were reproduced using a handheld 
imaging device with special emphasis on angiography; 
additionally, statistical analyses have been performed. 
Associations between dosage of ICG, working distance, 
angle, penetration depth, and ambient light, and fluores-
cence intensity have been quantified.

When concerning the dosage of ICG, fixed dose of 
ICG predominantly administered. Previous study by Li 
et  al demonstrated that there is no consensus regarding 
the optimal intravenous dose in flap surgery and that dif-
ferent groups use their own experiences to determine the 
dosage.9 Furthermore, it was reported that there is no evi-
dence showing that multiple intravenous dosages will 
affect the result of the quality of ICGA. Although their 
review included animal studies and small series, the 
authors agree that there is no consensus on ICGA dosage 
in flap surgery. Nonetheless, the ex vivo experiments sug-
gest an optimal ICG concentration of 0.002 mg/mL to 
0.004 mg/mL and demonstrate that ICG dose signifi-
cantly influences fluorescence intensity. Since patients 
with a higher body weight have a larger blood volume, 
the concentration of ICG can differ between patients. 
Since the estimated dose is based on ex vivo experiments, 
which is not comparable to in vivo conditions with unique 
circulating plasma volumes and cardiac outputs,9 a rec-
ommendation regarding the optimal dose cannot be 
given. However, consistent with van den Bos et  al, the 
authors conclude that applying a weight-adjusted dose 
seems preferable over a fixed dose.19

With regard to working distance and ambient light, a 
minority of studies reported the importance of this factor. 
Moyer et al previously described that fluorescence inten-
sity, emitted by ICG, can be dependent on the distance 
from the camera to the skin and ambient light in the room 
without reporting the relation between these factors.57 
The performed ex vivo experiments confirm that fluores-
cence intensity depends on distance and ambient light in 
the room. Analysis revealed that a higher distance signifi-
cantly reduces fluorescence intensity. Since manufactur-
ers recommend specific working distance for each 
available imaging device and fluorescence intensity is 
dependent on distance, the authors advocate not to devi-
ate from this recommendation and to report working dis-
tances in studies regarding flap perfusion assessment.

When concerning ambient light, the observed fluores-
cence intensity was significantly higher when ICGA was 
performed in light, compared with total darkness. 
However, in these experiments, the surrounding objects 
outside the region of interest were also observed better 
(subjectively). Target-to-background ratios as previously 
reported by Schols et  al were not determined to assess 
differences.76,77 However, subjective distinction between 
the region of interest (ie, wells plate) and surroundings 
did not differ in darkness or light. Yet, the assessment is 
preferred to be performed in the dark when possible, 
since there is no in vivo evidence on the exact influence 
of light.

Time to and duration of assessment is only reported in 
a few studies as being an important factor. According to 
the authors’ clinical experience, assessing the flap perfu-
sion in the first minute after ICG administration is the 
most important period of time to assess tissue perfusion 
adequately.

Regarding tissue resection and perfusion assessment, 
the assessment of absolute value together with assess-
ment of grayscale imaging were more frequently used 
than relative perfusion assessment. These 2 perfusion 
assessment techniques are a direct measure of the fluores-
cence intensity, as well as “absolute value assessments.” 
With the results of the ex vivo experiments, the authors 
conclude that these measurements are influenced by dose, 
working distance, angle, and ambient light. Presumably, 
when using the relative perfusion assessment, the effects 
of these factors can be diminished since percentages of 
perfusion are compared with reference tissue during the 
same perfusion assessment.57 Therefore, conclusions can 
be drawn that using “relative perfusion assessment” 
seems preferable over the other assessment methods. 
Furthermore, there is no consensus on cutoff values for 
tissue debridement in flap surgery when absolute value 
assessment or relative perfusion assessment is applied. 
Also, there is no consensus on debridement of tissue 
when applying grayscale imaging. For example, La 
Padula et al decided to respect the representing 0 fluores-
cence (ie, black area) and preserved “the hypovascular-
ized gray area,”29 whereas Pestana et  al reported to 
remove all areas of “poorer perfusion.”62 Further pro-
spective trials are warranted to determine reliable cutoff 
values.

When considering other factors of influence during 
ICGA, these factors are only described briefly in the lit-
erature. Epinephrine is the only factor that is demon-
strated to negatively influence assessment of tissue 
perfusion when using ICGA.47

The described ex vivo experiments have refuted the 
importance of the imaging head positioned perpendicular 
to the skin, as suggested by Yamaguchi et al.70 The imag-
ing head can be positioned in an angle of 60° to 90° 
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without influencing the observed fluorescence intensity 
to any meaningful extent.

Furthermore, penetration depth was analyzed in ex 
vivo experiments. The ex vivo experiments confirm that 
fluorescence intensity is significantly reduced when pen-
etration depth increases. Reported penetration depth 
ranges from 3 mm to 1 cm.39,57,58 In the experiments, opti-
mum fluorescence intensity was observed up to 4 mm of 
depth and up to approximately 8 mm of depth was 
observed subjectively to distinct fluorescence intensity 
from the surroundings. However, this experiment is lim-
ited by beeswax plates that were used to measure penetra-
tion depth. Although the spectral scattering properties are 
similar to human tissue, the spectral absorption differs, so 
it is to be expected that the penetration depth in human 
tissue is different. Another possible limitation is revealed 
by the observation of lower fluorescence intensity with 
higher doses of ICG. This phenomenon was also observed 
by van den Bos et al.19 Since the concentrations of ICG 
were diluted within 40 mg/mL of albumin in 0.9% NaCl 
dilution and lower concentrations were obtained by add-
ing 40 mg/mL solution, it is possible that the absolute 
quantity of albumin is higher in lower concentrations of 
ICG. Therefore, an optimum dose cannot be given based 
on these ex vivo experiments.

In addition to ICGA, other imaging techniques with 
the ability to assess intraoperative perfusion in free flap 
surgery have been described in a recent systematic 
review.5 These methods include the use of laser Doppler, 
oxygen saturation (SO

2
) measurements, ultrasound, 

dynamic infrared thermography, venous pressure mea-
surement, and microdialysis. Of these methods, ICGA 
and laser Doppler have currently been the most objective 
and reliable methods to directly assess tissue perfusion, 
leading to improvement of flap survival.5 Furthermore, a 
new imaging technique titled hyperspectral imaging has 
already shown promising results for physiologic tissue 
parameters.78 The technique can be used in precision sur-
gery and is already applied to guide flap reconstruction.79 
Preliminary results show a high capability for a camera to 
be used in perfusion measurements.80 Hyperspectral 
imaging is a noninvasive technique with no risk of 
adverse events.

With regard to adverse events, Li et al described poten-
tial adverse reactions to ICG, preoperative allergy testing, 
and contraindications of ICG in their systematic review.9 
The authors found a lack of reported preoperative ICG 
allergy tests and concluded that this may be due to the 
acceptance that ICG has a very low rate of allergy (1 out 
of 42 000 to 60 000) and does not damage blood composi-
tion and the coagulation system.9,11 Since 2 cases of fatal 
ICG anaphylaxis have been previously reported, Li et al 
consider preoperative iodine allergy testing a necessary 
precaution as iodine allergies are the most probable source 

of an adverse reaction to ICG. In addition to hypersensi-
tivity to iodine, several contraindications for applying 
ICG are mentioned, including closed-angle glaucoma, 
allergic asthma, severe hypertension, hepatic and renal 
function failure, and pregnancy.9

One of the previously mentioned imaging technolo-
gies may ultimately replace ICGA for flap assessment, 
since ICGA is an invasive procedure. However, at this 
time ICGA is one of the most suitable methods to directly 
assess tissue perfusion in free flap reconstructive 
surgery.5

In vivo studies would have been preferable over ex 
vivo experiments, including the effect on human tissue. 
On the other hand, measurements of ICG are confounded 
by in vivo fluorescence quenching, which makes it diffi-
cult to predict the precise working dose of ICG needed in 
the flap.9 In addition, a half-time life of 3 to 5 minutes 
hinders to assess different factors (eg, distance) in a lim-
ited time frame. Nevertheless, the current ex vivo setup 
offered a simple and objective method to assess factors of 
influence when using ICGA.

In future studies, the optimal ICG dose should be stan-
dardized through large series and clinical trials. In addi-
tion, authors should consider reporting ICGA protocols 
comprehensively to provide reproducibility and enable 
comparison of used methods between studies. Fortunately, 
the American Association of Physicist in Medicine 
recently established a Task Group working toward con-
sensus around guidelines and standards for advancing the 
field of fluorescence-guided surgery, by inventorying the 
key parameters, stakeholders, impacts, and outcomes of 
clinical fluorescence-guided surgery technology and its 
applications, to come to objective benchmarking and 
standardization within this field, and is expected to stimu-
late innovation.81

Conclusion

In conclusion, this study identified factors that signifi-
cantly influence the fluorescence intensity of ICGA, 
including dose, working distance, angle, penetration 
depth, and ambient light. Consequently, conclusions can 
be drawn that applying a weight-adjusted ICG dose 
seems preferable over a fixed dose when using ICGA 
for tissue perfusion assessment during reconstructive 
flap surgery. In addition, “relative perfusion assess-
ment” seems preferable over other assessment methods. 
It is advocated to use recommended working distances. 
Furthermore, the imaging head during ICGA can be 
positioned in an angle of 60° to 90° without signifi-
cantly influencing the observed fluorescence intensity. 
All of these factors should be considered when using 
ICGA for tissue perfusion assessment during recon-
structive flap surgery. To work toward consensus and 
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construct uniform guidelines, more transparency in 
methods in future studies is advocated.
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